Ergodic Theory, Abelian Groups, and Point Processes Induced by Stable Random Fields

ثبت نشده
چکیده

We consider a point process sequence induced by a stationary symmetric α-stable (0 < α < 2) discrete parameter random field. It is easy to prove, following the arguments in the one-dimensional case in Resnick and Samorodnitsky (2004), that if the random field is generated by a dissipative group action then the point process sequence converges weakly to a cluster Poisson process. For the conservative case, no general result is known even in the one-dimensional case. We look at a specific class of stable random fields generated by conservative actions whose effective dimensions can be computed using the structure theorem of finitely generated abelian groups. The corresponding point processes sequence is not tight and hence needs to be properly normalized in order to ensure weak convergence. This weak limit is computed using extreme value theory and some counting techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsingular Group Actions and Stationary Sαs Random Fields

This paper deals with measurable stationary symmetric stable random fields indexed by Rd and their relationship with the ergodic theory of nonsingular Rd-actions. Based on the phenomenal work of Rosiński (2000), we establish extensions of some structure results of stationary SαS processes to SαS fields. Depending on the ergodic theoretical nature of the underlying action, we observe different b...

متن کامل

Nonsingular Group Actions

This paper deals with measurable stationary symmetric stable random fields indexed by R and their relationship with the ergodic theory of nonsingular R-actions. Based on the phenomenal work of Rosiński (2000), we establish extensions of some structure results of stationary SαS processes to SαS fields. Depending on the ergodic theoretical nature of the underlying action, we observe different beh...

متن کامل

Determinantal Random Point Fields

The paper contains an exposition of recent as well as sufficiently old results on determinantal random point fields . We start with some general theorems including the proofs of the necessary and sufficient condition for the existence of determinantal random point field and a criterion for the weak convergence of its the distribution. In the second section we proceed with the examples of the de...

متن کامل

Ergodic Properties of Sum– and Max– Stable Stationary Random Fields via Null and Positive Group Actions

We establish characterization results for the ergodicity of symmetric α–stable (SαS) and α–Fréchet max–stable stationary random fields. We first show that the result of Samorodnitsky [35] remains valid in the multiparameter setting, i.e., a stationary SαS (0 < α < 2) random field is ergodic (or equivalently, weakly mixing) if and only if it is generated by a null group action. The similarity of...

متن کامل

Stationary Symmetric Α - Stable Discrete Parameter Random Fields

We establish a connection between the structure of a stationary symmetric α-stable random field (0 < α < 2) and ergodic theory of non-singular group actions, elaborating on a previous work by Rosiński (2000). With the help of this connection, we study the extreme values of the field over increasing boxes. Depending on the ergodic theoretical and group theoretical structures of the underlying ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009